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ABSTRACT

For every odd prime number p, we give examples of non-constant smooth

families of curves of genus 2 over fields of characteristic p which have pro-

Galois (pro-étale) covers of infinite degree with geometrically connected

fibers. The Jacobians of the curves are isomorphic to products of elliptic

curves.

1. Introduction and Main Result

In the following, unless stated otherwise, a curve over a field is assumed to be

smooth, proper and geometrically connected. This work is motivated by the

following general problem.

Consider all curves of a fixed genus g over fields of a certain type (e.g. alge-

braically closed, local, finitely generated). Among these curves, does there exist

a curve C over a field K which allows an infinite tower of non-trivial unramified
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covers · · · → Ci → · · · → C0 = C such that for all i, Ci is also a (geometrically

connected) curve over K and Ci → C is Galois?

We concentrate on this problem for curves of genus 2 over finitely generated

fields. Some examples of curves of genus 2 over finite fields allowing such a

tower of covers are known, and we address the question whether there also exist

non-constant curves of genus 2 (over function fields) with such a tower. We

show with explicit examples that this is the case.

Example 1.1: For every odd prime p, the (smooth, proper) curve of genus 2

given by the (affine) equation

Y 2 = (t− 1) · (1− tp−1) · (X2 − 1) · (X2 − tp−1) · (X2 − 1− t− · · · − tp−1)

over the global function field K = Fp2(t)[
√
t,
√
t− 1, . . . ,

√
t− (p− 1)] allows

such a tower of covers.

1.1. Further Background Information. We will use the following termi-

nology. A curve cover over K is a surjective morphism of curves over K. A

projective limit of a projective system of curves (where the morphisms are curve

covers) over K is called a pro-curve over K. A pro-curve cover of a curve

C over K is a surjective morphism π : D → C where D is a pro-curve.

Definition 1.2: A curve cover is Galois if it is unramified and the corresponding

extension of function fields is Galois. A pro-curve cover is pro-Galois if it is a

projective limit of a projective system of Galois covers.

For brevity, we speak of pro-Galois curve covers instead of pro-Galois

pro-curve covers.

With this terminology, the general problem posed above can be reformulated

as follows: Are there curves of a fixed genus g over fields of certain types which

allow pro-Galois curve covers of infinite degree?

As an example consider the case where K is an algebraically closed field.

Then a curve C over K allows a pro-Galois curve cover of infinite degree if

and only if the genus of C is ≥ 1. The situation is very different over finitely

generated fields.

No curve of genus 1 over a finitely generated field K has a pro-Galois curve

cover of infinite degree. There even exists a universal bound n = n(K) such

that all Galois curve covers of a genus 1 curve with a rational point over K

have degree ≤ n. Indeed, by the Theorem of Mazur–Kamienny–Merel (see [16])
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and an induction argument on the absolute transcendence degree of K, there

exists a number n = n(K) such that all elliptic curves over K have at most n

K-rational torsion points; from this the assertion follows, see [7, Section 2] for

details.

If K is finitely generated and C is a curve over K corresponding to the

generic point of the moduli scheme of curves of a certain genus, the authors

expect that C also does not have a pro-curve cover of infinite degree. But for

special curves the situation changes. For every natural number g ≥ 3 and every

field K containing the 4-th roots of unity, explicit examples of curves over K

of genus g having a pro-Galois curve cover of infinite degree can be given. If

K is not finite over its prime field the curves can be chosen to be non-constant

and even non-isotrivial (i.e., for every extension of the ground field, they stay

non-constant); see [7, 6].

For finite fields, examples of curves of genus 2 with a pro-Galois curve cover

of infinite degree are known (see [11, §3, Examples 2 and 3], [7]), but to the

knowledge of the authors, no examples of non-constant curves of genus 2 with

a pro-Galois curve cover have been known so far.

1.2. The Main Result. In this subsection we shall formulate the main result

of this paper. We freely use some results of [1] which we recall at the beginning

of Section 3. We begin with some notation.

Let p be an odd prime and N be an odd natural number. Let S be a smooth

variety over a finite field of characteristic p. We assume that there is an S-

isogeny

τ : E→ E′

between two elliptic curves over S having degree N . The kernel of the multi-

plication by 2 of E is denoted by E[2], the image of the zero-section by [0E].

We denote by E[2]# the S-scheme E[2] − [0E]. For the curve E′ we use similar

definitions.

Notation 1.3: Let P := E/〈−1〉,P′ := E′/〈−1〉 with projections

ρ : E→ P and ρ′ : E′ → P′.

Remark 1.4: The quotients P and P′ are P1-bundles over S which are isomorphic

to P
1
S if E[2] is S-isomorphic to the group scheme (Z/2Z)2.
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There exists a unique S-isomorphism

γ : P→̃P′

such that

ρ′ ◦ τ |E[2]# = γ ◦ ρ|E[2]# .

Assumption 1.5: Let the following two equivalent conditions be satisfied.

• For no geometric point s of S, there exists an isomorphism α : Es → E′

s

such that α|Es[2] = τs|Es[2].

• γ(ρ([0E])) and ρ′([0E′ ]) are disjoint.

Notation 1.6: Let C be the normalization of the integral scheme E×P′ E′ (where

the product is with respect to γ ◦ ρ and ρ′).

We thus have the commutative diagram

C

����
��

��
�

!!B
BB

BB
BB

B

E

ρ

��

E′

ρ′

��

P
γ

// P′ .

Now C is a curve of genus 2 over S and the morphisms C → E, C → E are

degree 2 covers. (For the terminology concerning relative curves, see Subsection

1.6.) It is the curve C which is the basic object of this article.

Our main result is the following theorem.

Theorem 1: We use the above notation and assume that Assumption 1.5 is

satisfied. So C is a curve of genus 2 over S which is defined as in Notation 1.6.

Then there exists a connected Galois cover T → S with Galois group, a

(finite) elementary abelian 2-group such that the curve CT over T has a pro-

Galois curve cover whose Galois group G fits into an exact sequence

1→
∞∏

i=1

Ani
→ G→ (Z/2Z)r → 1

with r ≤ 4, ni are pairwise distinct natural numbers and Ani
is the alternating

group on ni elements.
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Remark 1.7: It is easy to see that the Jacobian variety JC of C is isogenous

to E × E′. We shall prove the stronger result; that JC is in fact isomorphic to

E× E′; see Proposition 3.5 as well as Subsection 5.1 for additional information.

1.3. Outline of the Proof. The proof of Theorem 1 is organized as follows:

In Section 2, we show some basic results on ramification loci on varying covers

of a fixed elliptic curve by a fixed genus 2 curve over an algebraically closed field.

In Section 3, we fix an isogeny τ : E → E′ as in Theorem 1 (but over a more

general base scheme). Using results from [1], we first show that C is a curve of

genus 2 whose Jacobian is isomorphic to E×E′. We then show using the results

of Section 2 that there are infinitely many covers from C to E with the same

ramification and branch loci and pairwise distinct degrees. In Section 4, we

show how our main result follows from the existence of infinitely many minimal

genus 2 covers of a given elliptic curve with the same branch loci (under some

conditions).

Theorem 1 follows by combining the final result of Section 2, Proposition

3.10, with the main result of Section 4, Proposition 4.1.

1.4. Derivation of Examples. Theorem 1 can be used to obtain Example

1.1. Let p be an odd prime, let S := A
1
Fp
− {0, 1, . . . , p − 1} and let us denote

the coordinate on A1
Fp

by t. Let E be the genus 1 curve over S given by

Y 2Z −X(X − Z)(X − tZ) = 0.

We want to fix a section of E over S in order to turn E into an elliptic curve.

For this, let Ea be the S-scheme given by Y 2 − X(X − 1)(X − t) = 0 and let

a : S → Ea be section given by X 7→ t, Y 7→ 0. We have a natural inclusion

ι : Ea →֒ E which is compatible with the projection to S, and ι ◦ a is a section

of E over S. We take this section as the zero-section.

Similarly, let E′ be the elliptic curve over S given by

Y 2Z −X(X − Z)(X − tpZ) = 0

with zero-section determined by X 7→ tp, Y 7→ 0, and let τ : E → E′ be the

Frobenius endomorphism given by

X 7→ Xp, Y 7→ Y p, Z 7→ Zp.
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We note that the quotients E → P,E′ → P′ can be identified with the

usual projections to P1
S (to the “X-coordinate”), and under these identifica-

tions, γ : P → P′, becomes the identity. We also note that we have chosen S

in such a way that the assumptions of Theorem 1 are satisfied. The curve C

defined in Notation 1.6 is the normalization of E ×P1
S

E′. The field K in the

introduction is obtained as the function field of the “maximal” connected Galois

cover T → S which has an elementary abelian 2-group as Galois group, that

is, it is the maximal Galois extension of Fp(t) which is unramified outside the

places corresponding to 0, 1, . . . , p− 1 and the place ∞ and has an elementary

abelian 2-group as Galois group. (The explicit description of the field can, for

example, be obtained via Kummer theory.) The curve in the introduction is

the restriction of the curve CT to the generic fiber of T , that is, to Spec(K).

Further examples can be obtained as follows:

Let p be an odd prime and N ≥ 3 and assume that p and N are coprime.

It is well-known that there exists a fine moduli scheme for elliptic curves with

cyclic subgroups of order N and level-4-structure (of fixed determinant ζ4) over

schemes over Fp(ζ4). (p is odd.) Let us denote this scheme by Y0(N ; 4)Fp(ζ4):

it is a smooth affine curve over Fp(ζ4).

Let τ : E → E′ be the universal isogeny over Y0(N ; 4)Fp(ζ4). There exists a

uniquely determined open subscheme S of Y0(N ; 4)Fp(ζ4) such that the assump-

tions of Theorem 1 are satisfied. Obviously, S is non-empty (as otherwise the

universal elliptic curve over X0(N ; 4)Fp(ζ4) would have complex multiplication).

If we now apply Definition 1.6 to the restriction of the universal isogeny

τ : E→ E′ to S, we obtain a curve C over S. We can now apply Theorem 1 to

this curve.

1.5. Open Problems.

Problem 1.8: It is an open problem whether there exists a curve of genus 2

over a finitely generated field of characteristic 0 with a pro-Galois curve cover of

infinite degree. The existence of such a curve would of course be implied by the

existence of a genus 2 curve C with a pro-Galois curve cover of infinite degree

over an open part of Spec(OK), where OK is the principal order in a number

field. In Subsection 5.2 we discuss difficulties occurring when one tries to adapt

the proof of Theorem 1 to the “mixed-characteristic case”.
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There is a sharpening of the condition on a curve over a field having a pro-

Galois curve cover of infinite degree.

Let C be a curve over a field K and let P ∈ C(K). Following the ideas

of [11], the K-rational geometric fundamental group is introduced in [7]. Let

us denote this group by πgeo
1 (C,P ). The group πgeo

1 (C,P ) classifies pro-étale

(curve) covers c : D → C such that P splits completely. If deg(c) is finite, this

means that the topological point P has exactly deg(c) preimages under c. Thus

the group πgeo
1 (C,P ) is infinite if and only if a pro-étale (or pro-Galois) (curve)

cover of D → C of infinite degree exists such that P splits completely.

For every prime p, there exists a curve over a finite field K of characteristic

p with infinite K-rational geometric fundamental group. There also exists a

non-isotrivial curve over a function field in one variable over a finite field of

given prime characteristic p with infinite K-rational fundamental group; this

follows from [6, Theorem 4.3].

Moreover, for every natural number g ≥ 3 and every field K containing the

4-th roots of unity of characteristic congruent 3 modulo 4, explicit examples of

curves over K of genus g having an infinite K-rational fundamental group can

be given. If K is not finite over its prime field the curves can be chosen to be

non-isotrivial; see [6, Theorem 1.1].

Problem 1.9: It is an open problem whether any curve over a finitely generated

field K of characteristic 0 with infinite K-rational geometric fundamental group

exists,1 and the case g = 2 remains open in any characteristic.

1.6. Terminology and Facts. The usage of “Galois” follows [8, Exposé V].

In particular, if Y is a locally noetherian, integral, normal scheme, X is an

integral scheme and f : X → Y is a finite surjective morphism, then f is a

Galois cover if and only if it is unramified and the corresponding extension of

function fields is Galois; see [8, Exposé I, Corollaire 9.11] and [8, Exposé V, §8].

Let S be a connected locally noetherian scheme. A (relative) curve of

genus g over S is a smooth, proper S-scheme all of whose geometric fibers are

connected non-singular curves. We denote curves over S by C,D,E, . . .. If S is

the spectrum of a field, we also use the notation C,D,E, . . ..

1 The proof of [7, Theorem 4.22] and thus also the proof of the “Result” at the end

of the introduction of [7] are incorrect: As stated in [6, Remark 5.4], the condition

char(K) ≡ 3 mod 4 has to be inserted.
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By the first corollary to the Theorem in [20, Chapter II, §5], the Euler-

Poincaré characteristic of the geometric fibers of a relative curve is constant,

thus the genus of the fibers is also constant; we define the genus of a relative

curve to be the genus of any of its fibers.

We will often use the fact that a curve over a regular scheme is regular; see

[8, Exposé II, Proposition 3.1].

A curve cover of a curve C over S is a finite and flat S-morphism π : D→ C,

where D is also a curve over S.

Note that an S-morphism π : D→ C between two curves over S which induces

curve covers on the fibers is automatically finite and flat, that is, it is a curve

cover. (The morphism is fiberwise flat ([10, Proposition 9.7]) and thus flat by

[9, IV (11.3.11)], it is finite by [10, Corollary 4.8] and [9, IV (8.11.1)].)

A pro-curve over S is a projective limit of a projective system of curves with

respect to morphisms which are curve covers over S.

A pro-curve cover of a curve C over S is a projective limit of a projective

system of curve covers of C. A pro-Galois pro-curve cover is abbreviated as pro-

Galois curve cover, and its automorphism group is called Galois group.

We shall identify effective Cartier divisors on a locally noetherian integral

scheme X with the locally principal closed subschemes of X (cf., [10, Remark

6.17.1], [9, 21.2.12]). (This means in particular that Cartier divisors on an

integral, regular schemes are identified with closed subschemes of codimension

1.) If additionally X is an S-scheme, then under this identification, relative

effective Cartier divisors on X over S correspond to locally principal closed

subschemes of X which are flat over S; see [18, Definition 3.4].

Let S be a scheme. If S is integral, we denote its function field by κ(S). If

X is an S-scheme and T → S is a morphism, we denote the pull-back of X to

T by XT . If α : X → Y is a morphism of S-schemes, we denote its pull-back

via T by αT : XT → YT . Note that if X is a curve over S and T is connected

and locally noetherian, XT is a curve over T .

If A is an abelian scheme over S, the dual abelian scheme Â exists by [3,

Theorem 1.9]. If ϕ : A→ B is a homomorphism of abelian schemes over S, we

denote the dual homomorphism by ϕ̂ : B̂→ Â.

If A and B are two abelian schemes over S, we denote the product over

S by A × B. If A1, . . . ,An and B1, . . . ,Bm are abelian schemes over S,

we have a canonical isomorphism between the group of homomorphisms from
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∏
j Aj to

∏
i Bi and the group of matrices (ai,j)i=1...,m,j=1,...,n, where ai,j ∈

HomS(Aj ,Bi). The composition of homomorphisms (if applicable) corresponds

to the multiplication of the matrices. If we use matrices, we identify Z with its

image in any endomorphism ring.

If C is a curve over S, we denote its Jacobian by JC. The dual of the Jacobian

is denoted by JC and the canonical principal polarization on JC by λC : JC → ĴC;

(cf., [19, Proposition 6.9]). If π : D → C is a curve cover over S, we have

canonical homomorphisms π∗ : JC → JD and π∗ := λ−1
C
π̂∗ λD : JD → JC.

Let E be an elliptic curve over S, C a genus 2 curve over S, π : C→ E a curve

cover. We call π minimal if it does not factor through a non-trivial isogeny

E1 → E. Note that this is equivalent to ker(π∗ : JC → E) being an elliptic curve,

and it is equivalent to π∗ : E→ JC being a closed immersion, see the beginning

of Section 2 of [12] and Point 7) in Section 7 of [12].

Let π : X → Y be a finite morphism of locally noetherian schemes. Then the

image π(x) ∈ Y of a ramification point x ∈ X is called branch point. The set

of ramification points as well as the set of branch points are closed in X and Y

respectively (the set of ramification points is closed because it the support of

ΩX/Y , and the set of branch points is then the image of a closed set under a

finite morphism, thus also closed). The corresponding schemes with the reduced

induced scheme structures are called ramification locus and branch locus,

respectively.

We say that a field extension K|k is regular if K ⊗k k is a domain (k =

algebraic closure of k) (cf., [14, VIII, §4]). This notion should not be confused

with the notion of a regular scheme.

Acknowledgments. The authors would like to thank E. Kani and E. Viehweg

for fruitful discussions on questions related to this work. They thank the anony-

mous referee for carefully reading the manuscript and for various helpful sug-

gestions.

2. The Ramification Loci of Covers of Genus 2 of an Elliptic Curve

Let κ be an algebraically closed field. When we speak of the intersection

of two curves on a smooth surface, we mean the scheme-theoretic intersection.

We will use some easy results from intersection theory which we recall in an

appendix to this section.
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Let C be a curve of genus 2 over κ.

Proposition 2.1: Let P be a closed point of C, let c : C → E be a cover

which maps P to 0E , let ι : C → JC be the canonical immersion which maps P

to 0E. Then the following assertions are equivalent.

• c is unramified in P .

• ι(C) and ker(c∗) intersect transversely in ι(P ) (inside JC).

Proof. Let c−1(0E) = C0E
= C ×E 0E be the fiber of c at 0E . Note that

c = c∗ ◦ ι. Consider the following Cartesian diagram

c−1(0E) = C ×E 0E
� � //

��

C� _

ι

��

ker(c∗)

��

� � // JC

c∗

��

0E
� � // E

We know that c−1(0E) is a 0-dimensional closed subscheme on C, and its sup-

port contains P . Both statements of the proposition are equivalent to the

multiplicity of c−1(0E) at P being 1.

Proposition 2.2: Let c1 : C → E1, c2 : C → E2 be minimal covers such that

there does not exist an isomorphism of curves σ : E1→̃E2 with σ ◦ c1 = c2.

Then ker(c1∗) and ker(c2∗) are abelian subvarieties of JC which intersect in a

finite group scheme. There is the following alternative:

• Either the intersection of ker(c1∗) and ker(c2∗) is a reduced (étale) finite

group scheme and the ramification loci of c1 and c2 are disjoint.

• or the intersection of ker(c1∗) and ker(c2∗) is a non-reduced finite group

scheme and the ramification loci of c1 and c2 are equal.

Note that if char(κ) = 0 the first alternative holds.

Proof. The fact that the abelian subvarieties ker(c1∗) and ker(c2∗) of JC inter-

sect in a finite group scheme follows because by assumption there does not exist

a σ̃ ∈ Iso(E1, E2) with σ̃ ◦ c1∗ = c2∗.

Note that ker(c1∗) and ker(c2∗) intersect transversely at 0 if and only if the

intersection of the two elliptic curves is a reduced (étale) finite group scheme;

see also Lemma 2.6).
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Let P be a closed point of C. By composing the ci with suitable translations

on Ei, we can assume that ci(P ) = 0Ei
(i = 1, 2). We can now apply the

previous proposition. By the fact that “non-transversal intersection at P” is an

equivalence relation (see Lemma 2.7), we conclude:

If ker(c1∗)∩ker(c2∗) is a non-reduced finite group scheme, P is a ramification

point of c1 if and only if it is a ramification point of c2.

If, on the other hand, ker(c1∗) ∩ ker(c2∗) is a reduced finite group scheme, P

cannot be a ramification point of both c1 and c2.

Proposition 2.3: Assume that char(κ) = p > 0. Let c1 : C → E and

c2 : C → E be minimal covers. Let c1∗, c2∗ ∈ Homκ(JC , E) ⊗Z Fp be the

induced elements, and assume that c1∗ = c2∗. Then the ramification loci of c1

and c2 are equal.

Proof. Under the assumption of the proposition, ker(c1∗)[p] is equal to

ker(c2∗)[p] (as closed subschemes of JC). In particular, ker(c1∗) = ker(c2∗)

or ker(c1∗) ∩ ker(c2∗) is non-reduced. The result follows with the last proposi-

tion.

Appendix to Section 2: Facts about Intersection Theory. Let κ be

an algebraically closed field, let X be a smooth surface over κ, and let P ∈ X
be a closed point. Let Y be a curve in X . As always we assume that Y is

smooth. For the following arguments it would suffice that X and Y are smooth

at P . Note that X is locally factorial, so if Y →֒ X is a 1-dimensional closed

subscheme of X containing P with canonical closed immersion ιY : Y →֒ X ,

the kernel of ι#Y : OX,P → OY,P is generated by a single element f ∈ OX,P

(unique up to a unit). We call such an f a local equation of Y at P . Note

that f ∈ mX,P .

Definition 2.4: Let Y1 and Y2 be two curves on X such that P ∈ Y1, P ∈ Y2.

Then Y1 and Y2 intersect transversely at P if the local equations of Y1 and

Y2 at P generate mX,P .

Lemma 2.5: Let Y be a curve in X , let P be a closed point on Y . Then the

local equation of Y at P does not lie in m2
X,P .

Proof. This follows easily from the fact that X is regular and 2-dimensional

whereas Y is regular and 1-dimensional.
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For the following lemma, note that the surjection mX,P → mYi,P induces by

dualization injections of (Zariski) tangent spaces TYi,P →֒ TX,P .

Lemma 2.6: Let Yi ⊂ X (i = 1, 2) be two curves in X meeting in P . Let

Y1 ∩ Y2 := Y1 ×X Y2 be the scheme-theoretic intersection of Y1 and Y2. The

following statements are equivalent:

a) Y1 and Y2 intersect transversely at P .

b) Viewed as elements in mX,P /m
2
X,P , the local equations of Y1 and Y2 at

P are linearly independent.

c) The canonical homomorphism mX,P/m
2
X,P→mY1,P/m

2
Y1,P×mY2,P/m

2
Y2,P

is an isomorphism.

d) The canonical homomorphism TY1,P×TY2,P → TX,P is an isomorphism.

e) There exists a neighbourhood U of P such that (Y1 ∩ Y2)|U is equal to

the closed subscheme given by the closed immersion Spec (κ) →֒ U at

P .

Proof. a) and b) are equivalent by Nakayama’s Lemma. The equivalence of b)

and c) is easy, and d) is a “dual formulation” of c). The local ring of Y1 ∩Y2 at

P is isomorphic to OX,P /(f1, f2). This implies that a) holds if and only if the

local ring of Y1 ∩ Y2 at P is isomorphic to Spec(κ). This in turn is equivalent

to e).

We define a relation on the set of all curves Y lying in X and meeting P

as follows: Y1 is equivalent to Y2 if and only if Y1 and Y2 do not intersect

transversely at P .

Lemma 2.7: The relation just defined is an equivalence relation.

Proof. We only have to prove the transitivity. This follows from point b) in the

above equivalences with Lemma 2.5.

3. Minimal Covers with Prescribed Branch Loci

In this section, we first show how the results of [1] imply the statements which

were implicitly used in Subsection 1.2. Then we use the results of the previous

section to derive a preliminary result on our way to prove Theorem 1.

Let us start off as in Subsection 1.2: Let p be an odd prime number, and let

N be an odd natural number. Let S be a locally noetherian, integral, regular
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scheme of characteristic p. Let τ : E → E′ be an isogeny of elliptic curves over

S of degree N .

Also, as in Subsection 1.2, let E[2]# := E[2]− [0E], where [0E] is the Cartier

divisor associated to the zero-section 0E of E (similar definitions for E′), let

P := E/〈−1〉,P′ := E′/〈−1〉 with projections ρ : E→ P and ρ′ : E′ → P′.

Let ψ := τ |E[2] : E[2]→ E′[2].

It is well-known that P is isomorphic to the P1-bundle P(q∗(L(0E))), where

q : E → S is the structure morphism (see for example the discussion pre-

ceding Theorem 2 in [1]), and a similar statement holds for P′. Note that

E[2]# → S and E′[2]# → S are étale covers of degree 3 and E[2]# → P as well

as E′[2]# → P′ are closed immersions. By [1, Propsition B.4], there exists a

unique S-isomorphism γ : P→ P′ with γ ◦ ρ|E[2]# = ρ′ ◦ ψ. (The fact that P is

isomorphic to P1
S if E[2] ≃ (Z/2Z)2 also follows from [1, Propsition B.4].)

Lemma 3.1: The conditions

• for no geometric point s of S, there exists an isomorphism α : Es → E′

s

such that α|Es[2]# = ψ

• γ ◦ ρ([0E]) and ρ′([0E′ ]) are disjoint

are equivalent.

Proof. It is enough to prove the lemma in the case that S is the spectrum

of an algebraically closed field field. In this situation one can use [1, Lemma

A.1].

For the rest of this section, we assume that the conditions of Lemma 3.1 are

satisfied.

Lemma 3.2: E×P′ E′ is integral.

As in Notation 1.3, let C be the normalization of E×P′ E′, and let

π : C→ E, π′ : C→ E′

be the canonical projections.

Proposition 3.3: C is a curve of genus 2 over S and the maps π, π′ are degree

2 covers.

For Lemma 3.2 and Proposition 3.3, see [1, Proposition 4.4].
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In the notation of [1] ([1, Definition 2.7, Proposition 2.15]), (C, π, π′) is a

“normalized symmetric pair” corresponding to (E,E′, ψ). This means that

• ker(π∗) = Im((π′)∗) and ker(π∗) = Im(π′

∗
),

• π∗WC = E[2]# and π′

∗
WC = E′[2]#,

• π∗|E[2] = (π′)∗ ◦ ψ.

Here, WC is the Weierstraß divisor of C and E[2]# := E[2] − [0E], where [0E] is

the Cartier divisor associated to the zero-section 0E of E (similar definition for

E′[2]#).

Remark 3.4: Even without the assumption that S is regular, one can prove that

a genus 2 curve C over S and two degree 2 covers π, π′ with the above conditions

exist. Moreover, the triple (C, π, π′) is, up to unique isomorphism (defined in an

obvious way), uniquely determined by the three conditions. On the other hand,

if the two equivalent conditions in Lemma 3.1 are not satisfied, no normalized

symmetric pair corresponding to (E,E, ψ) exists. For more information on these

issues, we refer the reader to [1].

Let δ : E × E′ → JC be the homomorphism given by the matrix
(
π∗ (π′)∗

)
.

(We identify E and E′ with their dual abelian varieties.)

By [1, Proposition 2.14], the kernel of δ is Graph(−ψ) = Graph(ψ), and

the pull-back of the canonical principal polarization of JC via π is twice the

canonical product polarization of E× E′.

Proposition 3.5: The Jacobian JC is isomorphic to E× E′.

Proof. As said above, JC is isomorphic to (E × E′)/Graph(−ψ). The latter is

in turn isomorphic to E× E′. In fact, the isogeny

Φ : E× E′ → E× E′

given by the matrix ( 2 0
τ 1 ) has kernel Graph(−ψ), thus it induces an isomorphism

(E × E′)/Graph(−ψ)→̃E× E′.

We use the group structure on E and obtain for all a, b ∈ Z a morphism

aπ + bτ̂π′ : C→ E. We have a bilinear form

β : Z
2 × Z

2 → End(E), ((a, b), (c, d)) 7→ (aπ + bτ̂π′)∗ (cπ + dτ̂π′)∗
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with β((a, b), (a, b)) = deg(aπ + bτ̂π′). As by definition π∗ ◦ (π′)∗ = 0 and

π′

∗
◦ π∗ = 0, we have β((a, b), (c, d)) = 2ac+ 2Nbd ∈ Z. This implies that

(1) deg(aπ + bτ̂π′) = 2a2 + 2Nb2.

Let us fix the following notation: For (a, b) ∈ Z2, we denote the ramification

locus of aπ + bτ̂π′ by V(a,b) and the branch locus by ∆(a,b). Further, we set

V := V(1,0) and ∆ := ∆(1,0). The following lemma is [1, Proposition 3.11].

Lemma 3.6: π′|V is the zero-element in the abelian group E′(V ).

Proposition 3.7: If p|b, then V(1,b) = V and ∆(1,b) = ∆.

Proof. Let κ be any algebraically closed field, and let s be any point of S(k).

By Proposition 2.3, πs and (π + bτ̂π′)s : Cs → Es have the same ramification

locus.

Now let x be a κ-valued point of C lying over s. Then the support of x is

a ramification point of π if and only if it is a ramification point of πs: both

conditions are equivalent to the inclusion of κ into the local ring of x in the

geometric fiber Cπ(x) being not surjective. A corresponding statement holds for

π + bτ̂π′.

This implies that π and π + bτ̂π′ : C → E have the same ramification locus,

that is, the underlying sets of V(1,b) and V are equal. As both schemes are

endowed with the reduced induced scheme structure, we have that V(1,b) = V .

By Lemma 3.6, it follows that

(π + bτ̂π′)|V = π|V + bτ̂π′|V = π|V ,

In particular, V is mapped under π + bτ̂π′ to ∆. This implies that ∆(1,b) =

∆.

Proposition 3.8: If 2|b, then π + bτ̂π′ is minimal of degree 2 + 2Nb2.

Proof. The statement on the degree follows from (1).

To show that π + bτ̂π′ is minimal, that is, that it does not factor through a

non-trivial isogeny Ẽ→ E, it suffices to show that the homomorphism

π∗ + bτ̂π′

∗
: JC → E

does not factor through a non-trivial isogeny Ẽ→ E.

So assume that π∗ + bτ̂ factors through the isogeny Ẽ→ E. Then

(π∗ + bτ̂π′

∗
) ◦ π∗ : E→ E
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also factors through Ẽ → E. Now (π∗ + bτ̂π′

∗
) ◦ π∗ = 2 · idE. This implies that

the degree of the isogeny Ẽ→ E divides 4.

To rule out that the degree is 2 or 4, we consider the commutative diagram

E× E′

δ

��

Φ

))SSSSSSSSSSSSSSS

[2]

))

JC ≃ (E × E′)/Graph(−ψ)
∼

//

δ̂ λC

��

π∗+bτ̂π′

∗

''

E× E′ ,

Ψ
uukkkkkkkkkkkkkkk

E× E′

��

E

where Φ is given as in Proposition 3.5, Ψ : E × E′ → E × E′ is given by the

matrix
(

1 0
−τ 2

)
, and the last vertical arrow is given by the matrix ( 1 bτ̂ ). The

homomorphism

δ̂ λC : JC → E× E′

is given by the matrix
( π∗

π′

∗

)
.

Under the horizontal isomorphism in the diagram, π∗ + bτ̂π′

∗
is given by the

matrix (1 − bN 2bτ̂). Let ι : E → E × E′ ≃ JC be the inclusion of the first

summand. Then (π∗ + bτ̂π′

∗
) ◦ ι = (1 − bN) · idE. As by assumption 1 − bN is

odd, the degree of Ẽ→ E cannot be divisible by 2. It is thus an isomorphism.

We conclude that π + bτ̂π′ : C→ E is minimal.

The last two propositions imply:

Proposition 3.9: The covers πi := π + 2ipτ̂π′ : C → E (i ∈ N) are minimal

of degree 2+ 8N(ip)2 and have the same ramification loci and the same branch

loci.

We summarize the results stated in Lemma 3.1, Lemma 3.2 and in Proposi-

tions 3.3, 3.5 and 3.9 in the following proposition.

Proposition 3.10: Let p be an odd prime, let N be odd. Let S be a locally

noetherian, integral, regular scheme of characteristic p, let τ : E → E′ be a

cyclic isogeny of degree N over S.
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Then there exists a unique S-isomorphism γ : P→̃P′ such that ρ′ ◦ τ |E[2]# =

γ ◦ ρ|E[2]# . Assume that the following two equivalent conditions are satisfied.

• For no geometric point s of S, there exists an isomorphism α : Es → E′

s

such that α|Es[2] = τs|Es[2].

• γ(ρ([0E])) and ρ′([0E′ ]) are disjoint.

Let C be the normalization of the integral scheme E×P′ E′ (where the product is

with respect to γ ◦ρ and ρ′). Then C is a curve of genus 2 with JC ≃ E×E′, the

canonical morphisms π : C → E and π′ : C → E′ are degree 2 covers and there

exists a sequence (πi)i∈N0
of minimal covers πi : C → E with pairwise distinct

degrees and π0 = π such that the ramification loci as well as the branch loci of

the πi are all equal.

4. Pro-Galois Curve Covers of Infinite Degree

The goal of this section is to prove the following proposition which together

with Proposition 3.10 implies Theorem 1.

Proposition 4.1: Let S be an integral, regular scheme of finite type over

Z[1/2] or more generally a locally noetherian, integral, regular scheme over

Z[1/2] such that π1(S)/π1(S)2 is finite. (Here π1(S) denotes the fundamental

group of S with respect to some base point.)

Let E be an elliptic curve over S. Assume that there exists a sequence (πi)i∈N0

of minimal covers πi : Ci → E (where the Ci are curves of genus 2 over S) with

pairwise distinct degrees and deg(π0) = 2 as well as deg(πi) ≥ 5 for i ≥ 1 such

that the branch loci of the πi are all equal.

Let C := C0. Then there exists a connected Galois cover T → S with Galois

group a (finite) elementary abelian 2-group such that the curve CT over T has

a pro-Galois curve cover whose Galois group G fits into an exact sequence

1→
∞∏

i=1

Ani
→ G→ (Z/2Z)r → 1

for some r ≤ 4, where ni := deg(πi) and Ani
is the alternating group on ni

elements.

The rest of this section is devoted to a proof of this proposition.
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We first show that any integral, regular scheme S of finite type over Z[1/2]

the assumption that π(S)/π(S)2 is finite is satisfied. Thereby, we give some

background information on this condition as well.

Let S be any scheme over Z[1/2]. Then we have an exact sequence

0→ Γ(S,OS)∗/Γ(S,OS)∗2 → Hom(π1(S),Z/2Z)→ Pic(S)[2]→ 0 ;

see [17, Proposition 4.11] together with [17, Corollary 4.7]. We thus see that

π1(S)/π1(S)2 is finite if and only if both Pic(S)[2] and Γ(S,OS)∗/Γ(S,OS)∗2

are finite.

If now S is an integral, normal scheme of finite type over Z, both

groups Pic(S)[2] and Γ(S,OS)∗/Γ(S,OS)∗2 are in fact finite, and hence so is

π1(S)/π1(S)2; see [13, Theorems 7.4 and 7.5].

Now let the assumptions of the proposition be satisfied. Let ∆ be the branch

locus of each of the πi. As all residue characteristics are distinct from 2 and

deg(π0) = 2, for any s ∈ S (π0)s is generically étale, in particular, (π0)s is finite,

and all branch points in codimension 1 on E lie in the generic fiber over S.

More precisely, we have by [1, Lemma 3.13]

Lemma 4.2: The canonical morphism ∆→ S is an étale cover of degree 2.

Note that the curve E over S gives rise to an elliptic curve over κ(S). In

particular, the field extension κ(E)|κ(S) is regular. Let Li|κ(E) be the Galois

closure of the extension of function fields π#
i : κ(E) →֒ κ(Ci).

Let us fix some compositum Liκ(S) of Li and κ(S) over κ(S).

Lemma 4.3: The Galois group of Liκ(S)|κ(E)κ(S) is isomorphic to the sym-

metric group Sni
. In particular, the Galois group of Li|κ(E) is isomorphic to

Sni
, and Li|κ(S) is regular.

Proof. As the extension of function fields κ(Ci)κ(S)|κ(E)κ(S) over κ(S) has 2

branched places, the conorm of each of these places has the form P2
1P2 · · ·Pni−1,

where the Pj are pairwise distinct places. It follows that the Galois group of

Liκ(S)|κ(E)κ(S) (seen as permutation group on ni elements) contains a trans-

position.

Moreover, as πi : Ci → E is minimal, κ(Ci)|κ(E) has no proper intermediate

fields, and the same is true for κ(Ci)κ(S)|κ(E)κ(S).
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Hence the Galois group of Liκ(S)|κ(E)κ(S) is a primitive transitive subgroup

of Sni
with a transposition, and hence it is equal to Sni

, see [23, Theorem

13.3].

Let L0
i := L

Ani

i . Let C̃i be the normalization of E in Li, and let C̃0
i be the

normalization of E in L0
i .

Let us fix inclusions of κ(C̃i)|κ(E) into some algebraic closure of κ(E). For t ∈
N, let Dt be the normalization of E in the compositum of κ(C̃0), . . . , κ(C̃t) over

κ(E), and let D0
t be the normalization of E in the compositum of κ(C̃0

0), . . . , κ(C̃
0
t )

over κ(E) (both composita with respect to the inclusions into the fixed algebraic

closure of κ(E)). The extensions κ(Dt)|κ(E) and κ(D0
t )|κ(E) are Galois, and

κ(D0
t )|κ(E) has as Galois group an elementary abelian 2-group.

Dt
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Our goal is now to prove the following proposition.

Proposition 4.4: For all t ∈ N, we have:

a) The morphisms Dt → C and D0
t → C are Galois covers.

b) The Galois group of D0
t → C is an elementary abelian 2-group.

c) The restrictions Gal(κ(Dt)|κ(D0
t ))) → Gal(κ(C̃i)|κ(C̃0

i )) induce an iso-

morphism

Gal(Dt → D0
t ) ≃ Gal(κ(Dt)|κ(D0

t ))→̃
t∏

i=1

Gal(κ(C̃i)|κ(C̃0
i )) ≈

t∏

i=1

Ani
.

d) Let Ft be the algebraic closure of κ(S) in κ(D0
t ), let S0

t be the nor-

malization of S in Ft. Then S0
t → S is a Galois cover, and D0

t as well
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as Dt are in a canonical way curves over S0
t . The induced morphism

D0
t → CS0

t
is a Galois curve cover over S0

t with Galois group isomorphic

to (Z/2Z)r for some r ≤ 4. We have an exact sequence of Galois groups

1→ Gal(D0
t → CS0

t
)→ Gal(D0

t → C)→ Gal(S0
t → S)→ 1.

In particular, Gal(S0
t → S) is an elementary abelian 2-group.

Let us for the moment assume that we have proved Proposition 4.4. Then it

is not difficult to derive Proposition 4.1:

For any t ∈ N, the cover D0
t → C is a composite of the cover D0

t → CS0
t

and

the cover CS0
t
→ C. By the last item of Proposition 4.4 and the assumption

that π1(S)/π1(S)2 is finite, there exists some t0 ∈ N such that for t > t0, the

canonical morphism D0
t → D0

t0 is an isomorphism.

Let D0 := D0
t0 = lim←−D0

t , let T := S0
t0 . Then for all t ≥ t0, Dt is a curve over

T , and so is CT . Let D := lim←−Dt. Then D is a pro-Galois curve cover of CT

of infinite degree. Moreover, its Galois group is an extension of a group of the

form (Z/2Z)r with r ≤ 4 by
∏

∞

i=1 Gal(κ(Ci)|κ(C0
i )) ≈

∏
∞

i=1Ani
. This implies

Proposition 4.1.

∏
∞

i=1Ani

D

�� pro-Galois

curve cover

over T(Z/2Z)r

with r ≤ 4

D0

��

CT

��   
AA

AA
AA

AA

C

  A
AA

AA
AA

A T

��

Galois with

elementary abelian

2-group
S

Now we give the proof of Proposition 4.4. It is divided into several lemmas.

Proof of Assertion a). Let us recall Abhyankar’s Lemma.

Lemma 4.5 (Abhyankar’s Lemma): Let K be a field, L|K,M |K finite separable

extensions ofK, N = LM a compositum ofM and L overK. Let v be a discrete



Vol. 164, 2008 CURVES OF GENUS 2 WITH PRO-GALOIS COVERS 213

valuation of N , vM , vL, vK the restrictions of v to M,L,K respectively. Assume

that the extensions vM |vK and vL|vK are tame and that e(vM |vK)|e(vL|vK).

Then v|vL is unramified.

For a proof see [22, Proposition III.8.9] (the assumptions in [22, Proposition

III.8.9] that M |K be an extension of function fields in one variable and v a

valuation of function fields is not necessary).

Lemma 4.6: The morphisms C̃i → E and Dt → E are finite, the branched

points in codimension 1 are the generic points of ∆, and the corresponding

ramification indices are 2.

Proof. The first statement follows from the following general fact: if one normal-

izes an integral noetherian scheme in a finite separable extension of its function

field, the canonical morphism is finite (cf., [15, Chapter 4, Proposition 1.25]).

By Abhyankar’s Lemma, the ramified points in codimension 1 are the generic

points of ∆ and the ramification indices divide 2. As the corresponding exten-

sions of function fields are Galois, the ramification indices for points above the

branched points in codimension 1 are 2.

Lemma 4.7: The morphisms Dt → C̃0 = C are étale covers.

Proof. Let t ∈ N be fixed. By Lemma 4.6, the branch loci of Dt → E and C→ E

are equal, and the ramification indices of the branched points in codimension

1 are dividing 2. As L0|κ(E) has degree 2, this implies that for all points x in

codimension 1 of E, all ramification indices of Dt → E at x divide all ramification

indices of C̃0 → E at x.

By Abhyankar’s Lemma, Dt → C is unramified at all points of codimension

1. As S is regular and C is smooth over S, C is regular (in particular normal).

By “purity of the branch locus” ([8, Exposé X, 3.1]), Dt → C is unramified

everywhere, and because C is normal, it is étale; see [8, Exposé I, Corollaire

9.11].

Lemma 4.8: The morphisms Dt → C, Dt → D0
t and D0

t → C are Galois covers.

Proof. By the previous lemma, we already know that the morphisms Dt → C

are étale covers. Moreover, the corresponding extensions of functions fields are

Galois. As C (respectively D0
t ) is normal, this implies that the covers Dt → C

and Dt → D0
t are Galois. This, together with [8, Corollaire 3.4] implies that
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D0
t → C is étale. It is Galois because the corresponding extension of function

fields is Galois (and C is normal).

Proof of Assertions b) and c). We need a group theoretical lemma.

Lemma 4.9: Let G1, . . . , Gt be groups such that for any i, j with i 6= j, there

does not exist any non-trivial simple group which is a quotient group of both

Gi and Gj . Let G be a group with surjective homomorphisms pi : G → Gi.

Then the induced homomorphism p : G→∏t
i=1Gi is surjective.

Proof. The proof can be done by induction on t. For t = 2, the proof is as

follows.

Let N := 〈ker(p1) ∪ ker(p2)〉 — this is a normal subgroup of G. We have

canonical surjective homomorphisms Gi ≃ G/ ker(pi)→ G/N . By assumption,

G/N is trivial, that is, G = N .

This implies that p1|ker(p2) : ker(p2) → G1 and p2|ker(p1) : ker(p1) → G2 are

surjective. This in turn implies that the image of p contains G1 × {1} and

{1} ×G2, thus p is surjective.

Now we can proceed with the proof of Proposition 4.4.

By construction, κ(D0
t )|κ(E) is Galois with Galois group an elementary abeli-

an 2-group. It follows that the Galois group of D0
t → C is an elementary abelian

2-group. This proves Assertion b).

The covers Dt → D0
t are more interesting.

Lemma 4.10: The restrictions Gal(κ(Dt)|κ(D0
t )))→ Gal(κ(C̃i)|κ(C̃0

i )) are sur-

jective and induce an isomorphism

Gal(Dt → D0
t ) ≃ Gal(κ(Dt)|κ(D0

t ))→̃
t∏

i=1

Gal(κ(C̃i)|κ(C̃0
i )) ≈

t∏

i=1

Ani
.

Proof. The group Gal(κ(C̃0)|κ(C̃0
0)) is trivial, so let i ≥ 1. The group

Gal(κ(C̃i)|κ(C̃0
i )) is isomorphic to Ani

, and the group Gal(κ(D0
i )|κ(C̃0

i )) is an

elementary abelian 2-group. As ni ≥ 5 (because i ≥ 1), the group Ani
is sim-

ple (see [21, Theorem 3.15]) and in particular has no non-trivial elementary

abelian 2-group as quotient. By Lemma 4.9, the extensions κ(D0
t ) and κ(C̃i)

are linearly disjoint over κ(C̃0
i ) (inside κ(Dt)) (this will also be used in the proof

of Lemma 4.12). In particular, the restriction map Gal(κ(D0
t )κ(C̃i)|κ(D0

t )) →
Gal(κ(C̃i)|κ(C̃0

i )) is an isomorphism.
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Again by Lemma 4.9, the induced homomorphism Gal(κ(Dt)|κ(D0
t )) →∏t

i=1 Gal(κ(C̃i)|κ(C̃0
i )) ≈

∏t
i=1Ani

is surjective. It is obvious that it is in-

jective.

Proof of Assertion d). Again we first need a group theoretical lemma.

Lemma 4.11: Let G1, . . . , Gt be finite groups such that any i, j with i 6= j,

there is no simple group which occurs as a composition factor of both Gi and

Gj . Let G be a group with a homomorphism ϕ :
∏t

i=1Gi → G such that for

i = 1, . . . , t, the restriction of ϕ to Gi (regarded as a subgroup of
∏t

i=1Gi) has

kernel Ni. Then ϕ has kernel
∏t

i=1Ni (regarded as a subgroup of
∏t

i=1Gi).

Proof. Recall that if G is a finite group and N ⊳ G is a normal subgroup,

then composition series of both N and G/N in a canonical way give rise to a

composition series of G. In particular, the set of composition factors of G is the

union of the sets of composition factors of N and G/N .

The assumption and this remark imply that for any j = 2, . . . , t, there is no

simple group which occurs in the composition series of both
∏j−1

i=i Gi and Gj .

Because of this, the general case follows by induction from the case for t = 2.

In this case, the proof is as follows.

Obviously, N1×N2 in contained in the kernel of ϕ. The group ϕ(G1×{1})∩
ϕ({1} ×G2) is normal in both ϕ(G1 × {1}) and ϕ({1} ×G2).

However by assumption and the remark at the beginning of the proof, the

groups ϕ(G1 × {1}) and ϕ({1} × G2) cannot contain a non-trivial common

normal subgroup. This implies that the group ϕ(G1 × {1}) ∩ ϕ({1} × G2) is

trivial.

Now if ϕ(g1, g2) = 1, then ϕ(g1, 1) = ϕ(1, g−1
2 ) ∈ ϕ(G1 ×{1})∩ ϕ({1}×G2).

Thus this has to be 1. By the definition of N1 and N2, g1 ∈ N1, g2 ∈ N2, that

is, (g1, g2) ∈ N1 ×N2.

Lemma 4.12: Let Ft be the algebraic closure of κ(S) in κ(D0
t ). Then κ(Dt)|Ft

is regular.

Proof. As we have seen in the proof of Lemma 4.10, the fields κ(D0
t )

and κ(C̃i) are linearly disjoint extensions of κ(C̃0
i ). Let Ft,i be the

algebraic closure of Ft in κ(D0
t )κ(C̃i). If we apply Lemma 4.11 to the re-

striction map Gal(κ(D0
t )κ(C̃i)|κ(C̃0

i )) → Gal(Ft,iκ(C̃
0
i )|κ(C̃0

i )), we obtain that
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Ft,iκ(C̃
0
i ) = Ftκ(C̃

0
i ). As κ(C̃0

i )|κ(S) is regular, we obtain Ft,i = Ft, that is,

κ(D0
t )κ(C̃i)|Ft is regular.

By the structure of Gal(κ(Dt)|κ(D0
t )) and again Lemma 4.11, this implies

that κ(Dt)|Ft is regular.

Lemma 4.13: Let qt : D0
t → S be the structure morphism, and let S0

t be

the normalization of S in Ft. Then S0
t is equal to Spec(qt∗(OD0

t
)), and the

canonical morphism S0
t → S is an étale cover.

Proof. As D0
t is smooth and proper over S, for all s ∈ S, the ring of global

sections of the fiber (D0
t )s is a finite separable algebra over κ(s). This together

with [9, III (7.8.7)] implies that Spec(qt∗(OD0
t
))→ S is an étale cover. Again,

by [9, III (7.8.7)] applied to the generic point of S, one sees that the total ring

of fractions of Spec(qt∗(OD0
t
)) is Ft. This implies that Spec(qt∗(OD0

t
)) is the

normalization of S in Ft, that is, it is S0
t ; see [8, Corollaire 10.2].

We can consider D0
t as an S0

t -scheme (Stein factorization); let rt : D0
t → S0

t

be the structure morphism. Then OS0
t

= rt∗(OD0
t
), and D0

t has connected and

non-empty geometric fibers over S0
t (see [9, III (4.3.1), (4.3.4)]).

By the universal property of the product, D0
t → C factors through CS0

t
→ C.

Lemma 4.14: D0
t is a curve over S0

t and D0
t → CS0

t
is an étale curve cover.

Proof. The morphism D0
t → CS0

t
is an étale cover, because D0

t → C and CS0
t
→ C

are étale covers. This implies that D0
t is smooth and proper over St

0. It is a

curve because it has connected and 1-dimensional geometric fibers.

As S0
t → S is an étale cover and Ft|κ(S) is Galois with Galois group a quotient

of that of κ(C0
t )|κ(C) (as one easily sees) and S is normal, S0

t → S is a Galois

cover with Galois group an elementary abelian 2-group. The Galois group is

canonically isomorphic to that of CS0
t
→ C because base-change does not change

the Galois group.

By Galois theory the cover D0
t → CS0

t
is Galois, and we have the exact

sequence

1→ Gal(D0
t → CS0

t
)→ Gal(D0

t → C)→ Gal(CS0
t
→ C)→ 1

with Gal(S0
t → S) ≃ Gal(CS0

t
→ C), where all groups are elementary abelian

2-groups. By pull-back to a geometric fiber, we see that Gal(D0
t → CS0

t
) is a

group of the form (Z/2Z)r with r ≤ 2 · gC = 4.
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Now let St be analogously defined to S0
t for Dt. Then Dt has connected

geometric fibers over St and St is étale over S0
t . By Lemma 4.12 and [9, III

(7.8.7)], the generic fiber of Dt over S0
t is geometrically connected. On the

other hand, again by [9, III (7.8.7)] the number of connected components in

each geometric fiber of Dt over S0
t is equal to the degree of St over S0

t . This

implies that St→̃S0
t . The fact that Dt → D0

t is an étale cover (Lemma 4.8)

implies that Dt is a curve over S0
t . This completes the proof of Proposition 4.4.

5. Complementary Results

5.1. Abelian Surfaces Isogenous and Isomorphic to a Product of

Elliptic Curves. Recall that if C → E is a minimal cover of degree n over

some scheme S, the Jacobian of C is as principally polarized abelian variety

isomorphic to ((E × E′)/Graph(−ψ), λ) where E′ is an elliptic curve over S,

ψ : E[n] → E′[n] is an isomorphism which is anti-isometric with respect to the

Weil pairing and λ is the (principal) polarization whose pull-back to E × E′ is

n times the product polarization; see [12].

An important special case is that ψ is induced by an isogeny τ : E → E′

(necessarily of degree coprime to n). In this case (E×E′)/Graph(−ψ) is in fact

always isomorphic to E× E′ as can be seen by the following easy generalization

of the proof of Proposition 3.5.

Let n is some natural number, let E, E′ two elliptic curves over a scheme S,

let τ : E→ E′ be any isogeny of degree N coprime to n. (In Proposition 3.5 we

treated the case that n is 2 and N is odd.) As in Section 3, let ψ := τ |E[n].

Then the isogeny Φ : E × E′ → E × E′ given by the matrix ( n 0
τ 1 ) has kernel

Graph(−ψ), thus it induces in isomorphism

(2) (E× E′)/Graph(−ψ)→̃E× E′.

Assume now that ψ is anti-isometric with respect to the Weil pairing, i.e., that

N is congruent to −1 modulo n. Then (E × E′)/Graph(−ψ) has a principal

polarization λ whose pull-back to E × E′ is n idE×E′ ; see [12, Proposition 5.7].

(As in Section 3, we identify elliptic curves (and products of elliptic curves) with

their duals, so that the canonical (product) polarizations become the identity.)

Under isomorphism (2), the polarization λ corresponds to the principal po-

larization λ̃ on E × E′ whose pull-back with Φ is also n idE×E′ , i.e., we have

Φ̂ λ̃Φ = n idE×E′ . It follows that λ̃ = n Φ̂−1 Φ−1, and consequently λ̃ is given
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by the matrix

(3)
1

n

(
1 −τ̂
0 n

) (
1 0

−τ n

)
=

(
1+N

n −τ̂
−τ n

)
.

In particular any principally polarized abelian surface considered in [4, Propo-

sition 3.1] is isomorphic to a product of elliptic curves with a polarization given

by (3).

5.2. The Number Field Case. It is interesting to note that the assump-

tions of Proposition 4.1 cannot be satisfied for S equal to on open part of

Spec(OK [1/2]), where OK is the principal order in a number field K. Indeed,

this is contradicted by the following proposition.

Proposition 5.1: LetK be a number field, let S an open part of Spec(OK [1/2]),

and let E be an elliptic curve over S. Then there does not exist a sequence

(πi)i∈N0
of minimal covers πi : Ci → E (where the Ci are curves of genus 2) with

pairwise distinct degrees and the same branch locus which is étale of degree 2

over S.

Proof. By Faltings’ proof of the Shafarevich Conjecture ([2]), there exist only

finitely many isomorphism classes of curves of genus 2 over S. It thus suffices

to prove the proposition under the assumption that the Ci are equal to each

other. Now the conclusion is implied by the following proposition.

Proposition 5.2: Let K be a number field, E an elliptic curve and C a curve

of genus 2 over K. Then there does not exist a sequence (πi)i∈N0
of minimal

covers πi : C → E with pairwise distinct degrees and the same branch locus

which has degree 2 over K.

Proof. Assume there exists a sequence (πi)i∈N0
of minimal covers with pairwise

distinct degrees. Let ∆ be the common branch locus, let Vi the ramification

locus of πi. By the assumption and the Hurwitz genus formula both ∆ and

Vi have degree 2, thus the canonical maps Vi → ∆ are isomorphisms. As in

Proposition 2.2 the Vi are pairwise disjoint, C has infinitely many ∆-valued

points. This contradicts that by Faltings’ proof of the Mordell Conjecture ([2]),

any curve of genus ≥ 2 over a number field has only finitely many rational

points.
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One might ask whether there exists an elliptic curve E over a number field

K and a sequence (πi)i∈N of minimal covers πi : Ci → E (where the Ci are

curves of genus 2 over K) with pairwise distinct degrees and equal branch loci.

With similar (but easier) arguments as in Section 4, the existence of such a

sequence would lead to a curve of genus 2 over the maximal elementary abelian

2-extension of K which has a pro-Galois curve cover of infinite degree.

There is the following conjecture closely related to the height conjecture for

elliptic curves and so to the ABC conjecture.

Conjecture. Let E be an elliptic curve over a number field K. Then there is a

number n0(K,E) such that for all elliptic curvesE′ overK with E[n] isomorphic

to E′[n] for some n > n0(K,E) it follows that E and E′ are isogenous (over

K).

This conjecture is equivalent to Conjecture 5 in [5] in the special case that

the base field is a number field. (We use that the Faltings height over a number

field is effective and that given two elliptic curves E and E′ over a number field

such that for infinitely many natural numbers n, E[n] is isomorphic to E′[n], E

and E′ are isogenous.)

Proposition 5.3: Let K be a number field, E an elliptic curve over K. Then

under the assumption of the above conjecture, there are only finitely many

isomorphism classes of curves of genus 2 occurring as minimal covers of E with

covering degree > n0(K,E).

Proof. Let C → E be a genus 2 cover with covering degree n > n0(K,E),

JC ≃ (E × E′)/Graph(−ψ). Then we have the isomorphism ψ : E[n] ≃ E′[n],

thus by the conjecture E is isogenous to E′. This means that JC is isogenous

to E × E. By Faltings’ results, there are only finitely many abelian surfaces

isogenous to E × E, and any of these finitely many abelian surfaces has, up to

isomorphism, only finitely many principal polarizations. The result now follows

by Torelli’s Theorem.

Together with Proposition 5.2, this proposition implies

Proposition 5.4: Let K be a number field, E an elliptic curve over K. Then

under the assumption of the above conjecture, there does not exist a sequence

(πi)i∈N of minimal covers πi : Ci → E (where the Ci are curves of genus 2) with

pairwise distinct degrees and the same branch locus which has degree 2 over K.
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